257 research outputs found

    Neural Activity Patterns in Response to Interspecific and Intraspecific Variation in Mating Calls in the Túngara Frog

    Get PDF
    During mate choice, individuals must classify potential mates according to species identity and relative attractiveness. In many species, females do so by evaluating variation in the signals produced by males. Male túngara frogs (Physalaemus pustulosus) can produce single note calls (whines) and multi-note calls (whine-chucks). While the whine alone is sufficient for species recognition, females greatly prefer the whine-chuck when given a choice.To better understand how the brain responds to variation in male mating signals, we mapped neural activity patterns evoked by interspecific and intraspecific variation in mating calls in túngara frogs by measuring expression of egr-1. We predicted that egr-1 responses to conspecific calls would identify brain regions that are potentially important for species recognition and that at least some of those brain regions would vary in their egr-1 responses to mating calls that vary in attractiveness. We measured egr-1 in the auditory brainstem and its forebrain targets and found that conspecific whine-chucks elicited greater egr-1 expression than heterospecific whines in all but three regions. We found no evidence that preferred whine-chuck calls elicited greater egr-1 expression than conspecific whines in any of eleven brain regions examined, in contrast to predictions that mating preferences in túngara frogs emerge from greater responses in the auditory system.Although selectivity for species-specific signals is apparent throughout the túngara frog brain, further studies are necessary to elucidate how neural activity patterns vary with the attractiveness of conspecific mating calls

    Functional mapping of the auditory midbrain during mate call reception

    Get PDF
    We examined patterns of neural activity as assayed by changes in gene expression to localize representation of acoustic mating signals in the auditory midbrain of frogs. We exposed wild-caught male Physalaemus pustulosus to conspecific mating calls that vary in their behavioral salience, nonsalient mating calls, or no sound. We measured expression of the immediate early gene egr-1 (also called ZENK, zif268, NGFI-A, and krox-24) throughout the torus semicircularis, the auditory midbrain homolog of the inferior colliculus. Differential egr-1 induction in response to the acoustic stimuli occurred in the laminar, midline, and principal nuclei of the torus semicircularis, whereas the ventral region did not show significant effects of stimulus. The laminar nucleus differentially responded to conspecific mating calls compared with nonsalient mating calls, whereas the midline and principal nuclei responded preferentially to one of two conspecific calls. These responses were not explained by simple acoustic properties of the stimuli, and they demonstrate a functional heterogeneity of auditory processing of complex biological signals within the frog midbrain. Moreover, using analyses that assess the ability of the torus semicircularis as a whole to discriminate among acoustic stimuli, we found that activity patterns in the four regions together provide more information about biologically relevant acoustic stimuli than activity in any single region

    All's well that begins Wells: Celebrating 60 years of Animal Behaviour and 36 years of research on anuran social behaviour

    Get PDF
    The scientific study of frogs and toads as important systems in behavioural ecology traces its roots to an influential review published in this journal 36 years ago (Wells 1977a, ‘The social behaviour of anuran amphibians’, Animal Behaviour, 25, 666–693). In just 28 pages, Wells summarized the state of knowledge on important behaviours associated with anuran breeding and introduced an evolutionary framework ‘for understanding the relationship between social behaviour and ecology’ (page 666) that was largely lacking in earlier treatments of this group. Not only is Wells's review one of the most cited papers ever published in Animal Behaviour, it is also responsible for setting broad research agendas and shaping much of our current thinking on social behaviour in an entire order of vertebrates. As such, it is entirely appropriate that we honour Wells's review and its contributions to the study of animal behaviour in this inaugural essay celebrating 12 papers selected by the community as the most influential papers published in the 60-year history of Animal Behaviour. In our essay, we place Wells's review in historical context at the dawn of behavioural ecology, highlight the field's progress in answering some major research questions outlined in the review, and provide our own prospectus for future research on the social behaviour of anuran amphibians. Highlights ► This essay celebrates Kent Wells's (1977, Animal Behaviour, 25, 666–693) paper, ‘The social behaviour of anuran amphibians’. ► We place the article in historical context and outline its major contributions. ► We discuss progress on anuran social behaviour since its publication in 1977. ► We provide our own prospectus on the future of anuran behavioural ecology

    All-sky search for periodic gravitational waves in LIGO S4 data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin-axes, is 4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C parameter defined in equation 44 which led to its overestimate by 2^(1/4). The correct values for the multi-interferometer, H1 and L1 analyses are 9.2, 9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of the upper limits presented in the paper were affecte

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
    • …
    corecore